

Rapid Quantification of the Activating Effects of Hydrogen-Bonding Catalysts with a Colorimetric Sensor

Phuong N. H. Huynh, Ryan R. Walvoord, and Marisa C. Kozlowski*

Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States

Supporting Information

ABSTRACT: A sensor has been developed to quickly and simply assess the relative reactivity of different hydrogenbonding catalysts. Specifically, blue-shifts seen upon treatment of H-bonding catalysts with the colorimetric compound 7-methyl-2-phenylimidazo[1,2-*a*]pyrazin-3(7H)-one correlate well to the K_{eq} of binding to the sensor. The blue-shifts also show a high degree of correlation with relative rates in Diels–Alder reactions of methyl vinyl ketone and cyclopentadiene employing the H-bonding catalysts. The relevance of the sensor blueshifts to the LUMO-lowering abilities of the H-bonding catalysts is discussed.

lectrophile activation by small-molecule hydrogen-bond donors has emerged as an important paradigm for enantioselective catalysis.¹ Nonetheless, a thorough understanding of the principles and features that govern the reactivity and selectivity of these catalysts remains incomplete. A number of physical organic measurements have provided scales that can be used to estimate the reactivity, such as pK_a tables,² nucleophilicity and electrophilicity parameters,³ Irving-Williams order,^{4,5} etc., but no scales have been made for all categories of hydrogen-bonding catalysts. Contributing to this problem is the large range of H-bond strengths, from 0.2 to 40 kcal/mol.⁶ While the strength of a H-bonding interaction can be inferred from $\Delta p K_{av}^{7,8}$ such a measurement gives an incomplete account with respect to catalysis since a water molecule poorly mimics a substrate. As a result, secondary interactions, such as sterics, dual H-bonding,9 and H-bonding directionality, between a H-bond donor and an electrophilic substrate are not fully incorporated. Here, we present a simple spectroscopic measurement using a colorimetric sensor to determine the effectiveness of H-bonding catalysts in electrophilic activation of a monodentate substrate. The measurement is effective for a range of catalysts encompassing a pK_a window of ∼7−20.

We assessed a number of methods to judge the ability of different H-bond donors to activate a carbonyl (LUMO-lowering) but found that methods effective for strong Lewis acids, such as changes in IR or NMR signals, provided insufficient signal or were technically challenging. In search of a simple, easily applied measurement, we elected to use a colorimetric sensor molecule. 7-Methyl-2-phenylimidazo[1,2-a]pyrazin-3(7H)-one (1), which gives good correlations between λ_{max} -shifts and the Fukuzumi parameters for a small

number of Lewis acids, $^{10-12}$ was discovered to give a readily discernible signal upon coordination (eq 1) with a range of H-

bond donors (Chart 1). Figure 1 illustrates the simplicity of the method, with changes in color that are readily visible to the naked eye upon saturation with different H-bonding catalysts.

Figure 1. Change in color upon addition of hydrogen-bonding catalysts (see Chart 1) to the pyrazinone sensor 1 in dichloromethane.

Received: May 24, 2012 Published: September 13, 2012

ACS Publications © 2012 American Chemical Society

Figure 2. Response of sensor 1 at 2.22×10^{-5} M to increasing amounts of N_rN' -di(3,5-bis(trifluoromethyl)phenyl)thiourea (4) in dichloromethane.

Table 1. Hydrogen-Bonding Catalyst Saturated λ_{max} and K_{eq} Values for Binding to 1, along with k_{cat} Values for the Reaction in Eq 2 at 1 mol% Catalyst Loading in Benzene

H-bond catalyst	pK _a (in DMSO)	$\lambda_{\max} \ (nm)$	$K_{\rm eq}~({ m M}^{-1})$	$k_{\rm cat}~({\rm s}^{-1})$
none		499		_ ^a
2	13.4 (ref 7)	490	1.67×10	1.26×10^{-6}
3	17.1 (ref 15) ^b	487	3.23×10	1.80×10^{-6}
4	8.5 (ref 7)	477	1.77×10^{3}	2.09×10^{-5}
5	12.8-13.6 (ref 16)	473	3.34×10^{3}	4.90×10^{-5}
6	12.8–13.6 (ref 16) ^c	465	3.47×10^{5}	1.79×10^{-4}

 ${}^{a}k_{uncat} = 7.50 \times 10^{-5} \text{ s}^{-1}$. ^bFor 2-naphthol. ^cFirst pK_a may be 1–2 units lower due to dicationic nature of **6**.

Figure 3. Correlation between wavelength-shift and K_{eq} .

Figure 2 further illustrates the blue-shift in the λ_{max} of the sensor when combined with increasing amounts of a Hbonding catalyst, in this case N,N'-di(3,5-bis(trifluoromethyl)phenyl)thiourea (4). With these data, K_{eq} values (Table 1) for the sensor-H-bond donor association¹³ could be readily obtained from the corresponding titration curves as illustrated for 4.¹⁴ The inverse of the λ_{max} -shift obtained upon saturation with **2**-6 showed a strong correlation with the K_{eq} value (Figure 3), indicating that this λ_{max} -shift could be used as a reliable indicator of the association between the sensor and a prospective H-bonding catalyst.

Importantly, this sensor coordinates very weakly to water ($\Delta \lambda_{max}$ at saturation = 3.4 nm), which is easily displaced by catalyst. Thus, implementation is simple: sufficient catalyst is

added until no further blue-shift is seen. At this point, any water has been displaced, and the sensor is saturated. The $\lambda_{\rm max}$ obtained at this juncture is then used in the correlations to binding $(K_{\rm eq})$ and rate $(k_{\rm rel})$ see below). For example, a measurement can be made using 10 μ g of the sensor and \leq 10 mg of the catalyst without special precautions to exclude moisture.

Diels–Alder reactions of $\alpha_{,\beta}$ -unsaturated carbonyl dienophiles are well established to undergo rate acceleration with Lewis acids by LUMO-lowering of the dienophile,^{17–20} and a similar activation is believed to operate for H-bonding catalysts.²¹ To limit the number of different interactions between the substrates and the H-bonding catalyst, the monodentate substrate methyl vinyl ketone was selected along with a nonbonding diene, cyclopentadiene (eq 2). Rate measurements by NMR^{22,23} showed a range of activities for different H-bonding catalysts (Table 1).

A plot of $\ln(k_{\rm rel})$ ($k_{\rm rel} = k_{\rm cat}/k_{\rm uncat}$) vs the inverse of the $\lambda_{\rm max}$ -shift (Figure 4) showed a strong correlation, indicating that the binding to the sensor provides a reasonable account of the LUMO-lowering ability of different H-bonding catalysts. In contrast, the p $K_{\rm a}$ values do not track well with the reactivity (Table 1, p $K_{\rm a}$ vs $k_{\rm cat}$).

Figure 4. Correlation of Diels–Alder $k_{\rm rel}$ values from different hydrogen-bonding catalysts with the wavelength-shifts of sensor **1**.

In conclusion, pyrazinone sensor 1 was found to rapidly provide a read-out of the relative reactivity of hydrogenbonding catalysts in the Diels—Alder reaction of methyl vinyl ketone and cyclopentadiene. Namely, catalysts that cause a greater blue-shift at saturation of the sensor are more reactive. Thus, it appears that the interaction between hydrogen-bond donors and the carbonyl of the sensor provides a good approximation of the LUMO-lowering potential available via Hbonding. These preliminary results support the use of sensor 1 as a tool to gauge the relatively reactivity of new H-bonding catalysts and to further the understanding of why some Hbonding catalysts are more effective than others. Exploration of additional H-bonding donors and Lewis acids with the pyrazinone sensor and with other reactions is underway.

ASSOCIATED CONTENT

S Supporting Information

Experimental procedures, kinetics results, and spectral data. This material is available free of charge via the Internet at http://pubs.acs.org.

Corresponding Author

marisa@sas.upenn.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support was provided by the NIH (RO1GM087605). Partial instrumentation support was provided by the NIH for NMR (1S10RR022442). P.N.H.H. gratefully acknowledges the Vietnam Education Foundation for a fellowship.

REFERENCES

(1) For reviews, see: (a) Taylor, M. S.; Jacobsen, E. N. Angew. Chem, Int. Ed. 2006, 45, 1520–1543. (b) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713–5743. (c) Connon, S. J. Chem.—Eur. J. 2006, 12, 5418–5427. (d) Connon, S. J. Angew. Chem., Int. Ed. 2006, 45, 3909–3912. (e) Connon, S. J. Chem. Commun. 2008, 2499–2510. (f) Pihko, P. M. Angew. Chem., Int. Ed. 2004, 43, 2062–2064. (g) Ting, A.; Schaus, S. E. Eur. J. Org. Chem. 2007, 5797–5949. (h) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999–1010. (i) Akiyama, T. Chem. Rev. 2007, 107, 5744–5758. (j) Nagasawa, K.; Sohtome, Y. Synlett 2010, 000A–000V. (k) Schenker, S.; Zamfir, A.; Freund, M.; Tsogoeva, S. B. Eur. J. Org. Chem. 2011, 2209–2222. (l) Jensen, K. H.; Sigman, M. S. J. Org. Chem. 2010, 75, 7194–7201.

(2) Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456-463.

(3) Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66– 77.

(4) (a) Irving, H.; Williams, R. J. P. Nature 1948, 162, 746–747.
(b) Irving, H.; Williams, R. J. P. J. Chem. Soc. 1953, 3192–3210.

(5) Examples of applications of Irving–Williams order: (a) Evans, D.

A.; Rovis, T.; Johnson, J. S. Pure Appl. Chem. 1999, 71, 1407-1415.

(b) Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325-335.

(6) Steiner, T. Angew. Chem., Int. Ed. 2002, 41, 48-76.

(7) Jakab, G.; Tancon, C.; Zhang, Z.; Lippert, K. M.; Schreiner, P. R. Org. Lett. **2012**, *14*, 1724–1727.

(8) Gilli, P.; Pretto, L.; Bertolasi, V.; Gilli, G. Acc. Chem. Res. 2009, 42, 33-44.

(9) Annamalai, V. R.; Linton, E. C.; Kozlowski, M. C. Org. Lett. 2009, 11, 621–624.

(10) Takamuki, Y; Maki, S.; Niwa, H.; Ikeda, H.; Hirano, T. *Tetrahedron* **2005**, *61*, 10073–10080.

(11) Fukuzumi, S.; Kei Ohkubo, K. Chem.—Eur. J. 2000, 6, 4532–4535.

(12) Fukuzumi, S.; Kei Ohkubo, K. J. Am. Chem. Soc. 2002, 124, 10270-10271.

(13) Protonation of the pyrazinone sensor with methanesulfonic acid in DMSO has been reported: Nakai, S.; Yasui, M.; Nakazato, M.; Iwasaki, F.; Maki, S.; Niwa, H.; Ohashi, M.; Hirano, T. Bull. Chim. Soc. Jpn. 2003, 76, 2361–2387. Based on the K value of protonation, the sensor can be determined to have a corresponding pK of -1.0(DMSO). These data support interactions between the sensor and Hbond donors that do not involve proton transfer.

(14) See Supporting Information.

(15) Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456-463.

(16) Koppel, I.; Koppel, J.; Leito, I.; Grehn, L. J. Phys. Org. Chem. 1996, 9, 265-268.

(17) Corey, E. J.; Loh, T.-P; Sarshar, S.; Azimioara, M. Tetrahedron Lett. **1992**, 33, 6945–6948.

(18) Goering, H. L.; Chang, C. J. Org. Chem. 1975, 11, 2565.

(19) Alston, P. V; Ottenbrite, R. M. J. Org. Chem. 1975, 8, 1111-1116.

(20) Williamson, K. L.; Hsu, Y. L. J. Am. Chem. Soc. 1970, 92, 7385–7389.

(21) Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature 2003, 424, 146.

(22) Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289-296.

(23) Wittkopp, A.; Schreiner, P. R. Chem.-Eur. J. 2003, 9, 407-414.